Coverage dependent adsorption dynamics in hyperthermal organic thin film growth.

نویسندگان

  • A Amassian
  • T V Desai
  • S Kowarik
  • S Hong
  • A R Woll
  • G G Malliaras
  • F Schreiber
  • J R Engstrom
چکیده

We have examined the dynamics of adsorption of diindenoperylene (DIP) on SiO(2) and SiO(2) modified with an interfacial organic layer using in situ real time synchrotron x-ray scattering, focusing on the effects of coverage. On both surfaces we observe a substantial increase in the probability of adsorption with increasing coverage, which is most dramatic at the highest incident kinetic energies. On the initially uncovered surfaces, we observe a smooth decrease in the probability of adsorption with increasing incident kinetic energy, indicative of trapping-mediated adsorption. Once both surfaces are covered by DIP, the effects of incident kinetic energy are greatly reduced, and trapping is very efficient over the range of kinetic energies examined. Possible reasons for efficient trapping at high coverage and at high incident kinetic energy include more efficient momentum transfer due to mass matching, and possibly direct molecular insertion. Comparison to results on another small-molecule, pentacene, suggests that this behavior should be common to hyperthermal growth of a variety of other small-molecule thin films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ preparation, electrical and surface analytical characterization of pentacene thin film transistors

The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO2 channel area with carbon through repeated adsorption, dissociation...

متن کامل

Film growth model of atomic layer deposition for multicomponent thin films

Atomic layer deposition sALDd has become an essential technique for fabricating nano-scale thin films in the microelectronics industry, and its applications have been extended to multicomponent thin films, as well as to single metal oxide and nitride films. A mathematical film growth model for ALD is proposed to predict the deposition characteristics of multicomponent thin films grown mainly in...

متن کامل

Simulation of Fabrication toward High Quality Thin Films for Robotic Applications by Ionized Cluster Beam Deposition

The most commonly used method for the production of thin films is based on deposition of atoms or molecules onto a solid surface. One of the suitable method is to produce high quality metallic, semiconductor and organic thin film is Ionized cluster beam deposition (ICBD), which are used in electronic, robotic, optical, optoelectronic devices. Many important factors such as cluster size, cluster...

متن کامل

Generalized ellipsometry in-situ quantification of organic adsorbate attachment within slanted columnar thin films.

We apply generalized ellipsometry, well-known to be sensitive to the optical properties of anisotropic materials, to determine the amount of fibronectin protein that adsorbs onto a Ti slanted columnar thin film from solution. We find that the anisotropic optical properties of the thin film change upon organic adsorption. ...

متن کامل

Organic Thin Film Transistors with Polyvinylpyrrolidone / Nickel Oxide Sol-Gel Derived Nanocomposite Insulator

Polyvinylpyrrolidone  /  Nickel  oxide  (PVP/NiO)  dielectrics  were fabricated  with  sol-gel  method  using  0.2  g  of  PVP  at  different working  temperatures  of  80,  150  and  200  ºC.  Structural  properties and surface morphology of the hybrid films were investigated by X- Ray  diffraction  (XRD)  and  Scanning  Electron Microscope  (SEM) respectively. Energy dispersive X-ray spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 130 12  شماره 

صفحات  -

تاریخ انتشار 2009